Built Environment & Energy Laboratory
1. Airborne particle modeling technology
​
Method development:
-
Markov chain particle transport model development (Huang and Chen, 2024, Energy Build., 306, 113910; Huang et al., 2022, Build. Environ., 211, 108730; Huang and Chen, 2022, Build. Environ., 209, 108682; Zhou et al., 2021, Build. Environ., 202, 108027; Liu et al., 2020, Build. Environ., 186, 107323; Liu et al., 2019, Build. Simul., 12, 881–889; Chen et al., 2015, Aerosol Sci. Technol., 49, 857–871; Chen et al., 2015, Build. Environ., 90, 30–36; Chen et al., 2014, Indoor Air, 24, 81–92)
-
UV disinfection model development (Huang et al., 2024, Build. Environ., 264, 111948; Huang et al., 2024, Sci. Total Environ., 912, 168803; Pan et al., 2023, Build. Environ., 244, 110765; Pan et al., 2023, Build. Environ., 228, 109792)
-
Exhaled particle-containing airflow model development (Pan et al., 2022, Indoor Air, 32, e13088; Chen et al., 2014, Indoor Air, 24, 580–591)
-
Particle deposition distribution model development (Pan et al., 2019, Build. Environ., 150, 156–163; Chen et al., 2016, Build. Environ., 107, 79–89)
-
Lagrangian particle tracking model development (Chen et al., 2015, Aerosol Sci. Technol., 49, 351–361; Chen et al., 2013, Build. Environ., 62, 45–54)
​
Fundamental research:
-
Particle deposition v.s. near-wall turbulence, surface roughness, natural ventilation (Pan and Chen, 2021, Build. Environ., 196, 107814; Pan et al., 2020, Build. Environ., 176, 106870; Liu et al., 2018, Build. Environ., 144, 357–364)
-
Infectious particle transport v.s. ultraviolet disinfection, ventilation, etc. (Guo et al., 2024, 478, 135518; Guo and Chen, 2024, J. Hazard. Mater., 465, 133358; Guo et al., 2023, Build. Environ. 245, 110900; Xia et al., 2022, J. Hazard. Mater., 436, 129241; Chen et al., 2018, Build. Simul., 11, 1039–1051; Chen et al., 2014, HVAC&R Res., 20, 80–91; Chen and Zhao, 2010, Indoor Air, 20, 95–111)
​
Applied research:
-
Aircraft cabin supply air nozzle design (Pan et al., 2021, Build. Environ., 186, 107324)
-
Infectious particle transport in hospitals (Huang et al., 2022, J. Hazard. Mater., 436, 129152; Chen et al., 2011, J. Royal Soc. Interface, 8, 699–710; Chen et al., 2010. J. Royal Soc. Interface, 7, 1105–1118)
-
Infectious particle transport in transportation (Pan and Zhang et al., 2024, Sci. Total Environ., 928, 172363; Pan et al., 2023, Sci. Total Environ., 902, 166099)
​
2. Nanofiber air filtration technology
​
Method development:
-
Metal-organic frameworks (MOFs)-nanofiber filters (Bian et al., 2024. Sep. Purif. Technol., 331, 125569; Niu et al., 2022, ACS Appl. Mater. Interfaces, 14, 27096–27106; Bian et al., 2022, ACS Appl. Mater. Interfaces, 14, 23570−23576; Bian et al., 2020, Appl. Mater. Today, 20, 100653; Bian et al., 2018, J. Mater. Chem. A, 6, 15807–15814)
-
Optimization method for nanofiber filter fabrication (Niu et al., 2021, Build. Environ., 188, 107449)
-
Environmentally friendly nanofiber filters (Bian et al., 2018, IEEE Trans. Nanotechnol., 17, 934–939)
-
Adaptive nanofiber filters (Niu et al., 2024, 478, 135546)
​
Fundamental research:
-
Particle removal efficiency, pressure drop v.s. face velocity, fiber diameter, filter thickness, packing density (Bian et al., 2020, Build. Environ., 170, 106628; Bian et al., 2018, Build. Environ., 142,244–251; Xia et al., 2018, Energy Build., 158, 987–999)
-
Particle removal efficiency, pressure drop v.s. solid particle/wetting liquid aerosol loading (Xia and Chen, 2021, J. Hazard. Mater., 402, 123479; Xia and Chen, 2020, Build. Environ., 172, 106725)
​
Applied research:
-
Nanofiber window screen (Xia et al., 2020, Build. Simul., 13, 873–886.; Shi et al., 2017, Indoor Air, 27, 1190–1200)
-
Face mask/aircraft cabin (Zhang et al., 2024, Sci. Total Environ. 954, 176059; Wang et al., 2021, Nano Energy, 85, 106015)
​
3. Indoor air quality control technology
​
Method development:
-
Indoor-outdoor PM differentiation method (Xia et al., 2021, Indoor Air, 31, 2020–2032; Xia and Chen, 2019, Build. Environ., 147, 528–539)
-
Artificial intelligence indoor PM control method (An et al., 2023, Energy Build., 295, 113340; An et al., 2022, Build. Environ., 224, 109583; An et al., 2021, Build. Environ., 200, 107978)
-
Outdoor-to-indoor PM modeling method (Chen et al., 2012, Build. Environ., 47, 339–348)
​
Fundamental research:
-
Outdoor-to-indoor PM/ozone v.s. mortality (Chen et al., 2012, Epidemiol., 23, 870–878; Chen et al., 2012, Environ. Health Perspect., 120, 235–240; Chen and Zhao, Atmospheric Environment, 45, 275–288)
-
Positive pressure control v.s. influencing factors (Chen et al., 2011, Build. Environ., 46, 1167–1173; Chen et al., 2011, J. Hazard. Mater., 186, 1290–1299)
​
4. Energy and comfort technology
​
Method development:
-
Radiative cooling materials fabrication and modeling (Yu et al., 2023, Energy Build., 298, 113578; Yu et al., 2022, Renew. Energy, 194, 129−136; Yu et al., 2021, Nano Energy, 88, 106259; Yu and Chen, 2021, Build. Environ., 197, 107841; Yu and Chen, 2020, Sol. Energy Mater. Sol. Cells, 209, 110459)
-
Probability-based thermal comfort model (Lai and Chen, 2019, Energy Build., 188–189, 269–277; Lai et al., 2018, Energy Build., 168, 261–271)
-
Air infiltration/ventilation modeling method (Dai et al., 2024, Energy Build., 307, 113993; Dai and Chen, 2022, Build. Environ., 219, 109211; Chen et al., 2016, Energy Build., 118, 329–338)
-
Design and optimization method (Dai et al., 2024, Build. Environ. 263, 111865)
​
Fundamental research:
-
Pressure drop in ventilation system (Dai et al., 2021, Build. Simul., 14, 1251–1261)
​